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Energy dissipation for quasielastic granular particle collisions

W. A. M. Morgado
Department of Physics, MIT, Cambridge, Massachusetts 02139

I. Oppenheim
Department of Chemistry, MIT, Cambridge, Massachusetts 02139

~Received 6 August 1996!

From a first principles theory for the behavior of smooth granular systems, we derive the form for the
instantaneous dissipative force acting between two grains. The present model, which is based on the classical
harmonic crystal, reproduces the dependence of the kinetic energy dissipation on the grain deformation ob-
tained by models that assume a viscoelastic behavior~without permanent plastic deformations! during the
collision. @S1063-651X~97!04902-7#

PACS number~s!: 46.10.1z, 05.60.1w, 46.30.Pa, 51.10.1y
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I. INTRODUCTION

The term granular system designates a wide range ra
of physical systems that are characterized by certain com
features @1#: they exist in macroscopic portions~grains!,
which, in the dry state, interact mainly repulsively throu
rigid elastic interactions; there is contact friction between
grains; and energy is dissipated during collisions due to
excitation of the internal modes. Sand, powders, particle
planetary rings@2#, salt and sugar, and grains in a silo@3# are
just a few of the many examples of granular systems. Th
systems are extremely important for a number of indust
applications@4# ~transport properties of powder or grain
mixtures of grains and fluids, etc.!. Thus it is important to
understand their flow properties@1,5,6#. The loss of kinetic
energy via heating the grains makes the granular gas fu
mentally different from a molecular system@7# and an im-
portant medium to study nonequilibrium phenomena. Gra
lar systems present a rich variety of behavior ranging fr
solidlike to liquidlike, depending on the external stresses
plied to the system@8#.

The inelastic character of granular collisions can be su
marized in terms of a coefficient of restitution which is
proportionality relation between the final and initial relati
velocities in a collision. Even though the coefficient
known to depend on the initial relative velocity@9#, for sim-
plicity and computational economy, several authors have
sumed it to be independent of the collision paramet
@1,5,6#. In order to improve the understanding of instan
neous energy dissipation, some authors have tried to m
relative velocity-dependent dissipation functions. Se
consistent dimensional arguments were used@4#, but a more
promising line assumes that the collision is slow enough
that a weak viscoelastic frictional force is superimposed o
the elastic repulsive force@10,11#.

In the present study, we propose to investigate a sim
microscopic model for harmonic grains. Under the assum
tion that the collisions are slow enough so that no pla
deformations occur, the present model reproduces the re
obtained using a viscoelastic interaction between the gr
@10,11#.

The paper is organized as follows. In Sec. II, we deve
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the model for the potential energy of deformed harmo
grains from the classical harmonic crystal model. In Sec.
we study the case of two interacting grains. In Sec. IV
transport coefficient describing the instantaneous kinetic
ergy dissipation is obtained. In Sec. V, we obtain the eq
tion of motion for colliding grains. In Sec. VI, the magnitud
of the dissipative term is evaluated. In Sec. VII, we presen
brief summary of our results.

II. DEFORMATIONS AND POTENTIAL ENERGY

In this section we derive the potential energy of a d
formed spherical granular particle. We assume that its ato
interact through microscopic two-body potentials. The ato
in the granular particles~GP! are arranged in a crystallin
lattice form. LetRi denote the equilibrium, nondeformed po
sition of atomi (Ri[aâ1bb̂1cĉ, whereâ,b̂,ĉ are the Bra-
vais lattice basis vectors, anda,b,c are integers! @12#. Let
ri denote the displacement from equilibrium for atomi , and
let ui[u(Ri) denote the displacement of atomi ’s equilib-
rium position due to external constraints. The atom’s act
positiondi is therefore given by

di5Ri1ui1ri .

The distance between two atoms in the deformed medium
then a function of the initial undeformed distance and of
elastic and thermal displacements,

di j5~Rj2Ri !1~uj2ui !1~rj2ri !. ~1!

The differenceuj2ui depends on the deformation expe
enced by the crystal. IfRj2Ri is small compared to the
characteristic length associated with the deformations,
obtain

uj2ui'~Rj2Ri !•¹Ru~R!uR5Ri

5~Rj2Ri !b

]

]xb
u~x!U

x5Ri

, ~2!
1940 © 1997 The American Physical Society
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55 1941ENERGY DISSIPATION FOR QUASIELASTIC . . .
where Greek subscripts denote coordinate indices and
peated indices imply summation~for b51,2,3). The distance
between atomsi and j is then given by

di j5~Rj2Ri !1~Rj2Ri !b

]

]xib
u~Ri !1~rj2ri !. ~3!

We will assume that effects associated with displacem
of dislocations and other crystal defects are small. Thus,
can expand the total crystal potential energy around the
positions of the atoms up to second order in the variation
the positions. By expanding the potential

F5
1

2(i (
iÞ j

f i j

around the equilibrium distance of (Rj2Ri) @13#, we obtain

f i j5f~ udi j u!,

f i j'f~ uRj2Ri u!1~bi j •¹!f~ uRj2Ri u!

1 1
2 ~bi j .¹!2f~ uRj2Ri u!,

F'
1

2(i , j f~ uRj2Ri u!1
1

4(i , j ~bi j .¹!2f~ uRj2Ri u!,

~4!

up to quadratic order, where bi j5bj2bi5(Rj
2Ri)•¹u1(rj2ri), and the indicesi and j run over all
atoms in the GP.

We define the matrixDmn
i j

Dmn
i j 5d i , j(

k

]2f ik

]xm]xn
2

]2f i j

]xm]xn
. ~5!

With the properties

Dmn
i j 5Dnm

j i , Dmn
i j 5Dnm

i j , (
i

all atoms

Dmn
i j 50.

ThusF can be written in the form

F5
1

2(i , j f~ uRj2Ri u!1
1

2(i , j b imDmn
i j b jn . ~6!

The potentialF can be separated into ground state e
ergy, harmonic potential, elastic potential, and coupling pa
as follows:

F5F01
1

2(i , j r imDmn
i j r jn1

1

2(i , j RiaDmn
i j Rjb

]um

]xa

]un

]xb

1(
i , j

RiaDmn
i j ]um

]xa
r jn , ~7!

whereF05( j( i, jf(uRj2Ri u).
The elastic potential term~due to the deformation! which

is given by

Vel5
1

2(i , j RiaDmn
i j Rjb

]um

]xa
~Ri !

]un

]xb
~Rj !,
re-

nt
e
w
of

-
ts

accounts for the classical elastic energy of the material@12#.
Using the properties ofDmn

i j we can rewriteVel in the form

Vel5
1

2(j Eambn

]um

]xa
~Rj !

]un

]xb
~Rj !,

where the derivatives ofu are taken at the pointRi and

Eambn52
1

2 (
i

all atoms

RiaDmn~Ri !Rib .

The above expression can be further transformed by notic
that a pure rotation does not change the solid energy. T
implies thatVel can depend on (]un /]xb) only through the
strain tensor, which for small deformations has the form

uab5
1

2 S ]ua

]xb
1

]ub

]xa
D . ~8!

The elastic term then becomes@12#

Vel5
1

2(j E~am!~bn!uam~Rj !unb~Rj !, ~9!

where the symbols (am) and (bn) denote the symmetric
part of E(am)(bn) with respect to (am) and (bn), respec-
tively.

The term

Vf5(
i , j

RiaDmn
i j ]um

]xa
~Ri !r jn ,

is responsible for the coupling between the internal degr
of freedom,ri , and the distance between the two GPs c
ters of mass, through the derivative (]um /]xa), which can
be taken atRj to a very good approximation.

Due to a similar argument to Eq.~9!, we can write the
coupling term as

Vf5(
j
E~am!nuamr jn , ~10!

whereE(am)n is the symmetric tensor~on am) given by

E~am!n52
1

4(j @RjaDmn~Rj !1RjmDan~Rj !#. ~11!

III. INTERACTION BETWEEN
TWO GRANULAR PARTICLES

When two GPs interact, the results of Sec. II must
generalized to include cross-terms between the degree
freedom of the two grains. We have to take into account
terms that correspond to direct interaction between GP
and 2. Before doing the expansion forf i j ~wherei belongs
to particle 1 andj belongs to particle 2!, we can eliminate
thosef i j ’s which are small~those for whichur i j u@r 0[ in-
teraction range of the order of the lattice parameter!. Since
this is a short range interaction, only those atoms close to
interface between particles 1 and 2 will contribute. Th
number being proportional to the area of the interface,
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will neglect them in comparison with the bulk contribution
the coupling energy. The coupling potential can then be w
ten as~where the superscripts denote the grain!

Vf5(
j

~1!

E~am!n
~1! uam

~1!r jn
~1!1(

j

~2!

E~am!n
~2! uam

~2!r jn
~2! , ~12!

where the superscripts~1! and ~2! denote particles 1 and 2
and the strain tensor depends on the Bravais summatio
dex. We are going to use the convention that whenever th
is a sum over Bravais vectors in the following, the stra
tensor depends on the summation index.

The total elastic contribution will be

Vel5
1

2(i
~1!

E~am!~bn!
~1! uam

~1!unb
~1!1

1

2(i
~2!

E~am!~bn!
~2! uam

~2!unb
~2! , ~13!

and the total harmonic contribution is given by

VH5
1

2(i , j
~1!

~r jm
~1!2r im

~1!!Dmn
~1!i j ~r jn

~1!2r in
~1!!

1
1

2(i , j
~2!

~r jm
~2!2r im

~2!!Dmn
~2!i j ~r jn

~2!2r in
~2!!. ~14!

IV. DISSIPATION OF ENERGY

Schofield and Oppenheim@14# proposed a mechanism fo
the dissipation of energy that occurs when two GP~1 and 2!
collide. It is mediated by a transport coefficient defined
follows:

g~r 12!5E
0

`

dt^¹̂Vfe
2Lint¹̂Vf& f , ~15!

where^•••& f means a statistical average keeping the ce
of masses fixed,Lin is the Liouvillian operator for the inter
nal granular degrees of freedom only,~i.e., center of mass
positions and total momentum are kept fixed!, and
Â5A2^A& f . The typical variation ofuri u is smaller than
a, the typical lattice spacing. Given that the typical mac
scopic deformation ish, ands is the GP’s diameter, we hav
the inequalitiesa!h!s.

The coefficientg(r 12) will be given to lowest order in the
strain tensor~which is assumed to be small! by @14#

g~r 12!5E
0

`

dt^¹̂Vfe
2Lharmt¹̂Vf& f .

The linearity ofVf in ri leads to¹̂Vf5¹Vf , due to the
symmetry of a harmonic oscillator. Cross averages l
^rj

(1)rk
(2)& f will also vanish. Thus, we have forg(r 12)
t-

in-
re

s

er

-

e

g~r 12!5(
i , j

~1!

E~am!n
~1! E~bg!u

~1! ~¹12ubg
~1!!~¹12uam

~1! !

3E
0

`

dt^r in
~1!r ju

~1!~t !& f

1(
i , j

~2!

E~am!n
~2! E~bg!u

~2! ~¹12ubg
~2!!~¹12uam

~2! !

3E
0

`

dt^r in
~2!r ju

~2!~t !& f , ~16!

where¹125¹r12
.

The harmonic form for the potential gives in the first a
proximation@15,16#

^r inr ju~t!& f5Dnu
21i j kBTF~t!, ~17!

where the correlation functionF(t) can be assumed to deca
quickly for a large range of interatomic potentials to insu
the convergence of the time integrals. We will assume
form @16#

F~t!5e2t/tv,

wheretv sets the vibrational time scale. The time integrals
Eq. ~16! becometvDnu

21i j kT.
Since the particles are identical, we can rewriteg(r 12) as

g~r 12!5tv(
i , j

E~am!nE~bg!uDnu
21i j3„~¹12ubg

~1!!~¹12uam
~1! !

1~¹12ubg
~2!!~¹12uam

~2! !…. ~18!

Equation~18! describes the energy dissipation occurring d
ing the collision of two GPs, as will be seen in Sec. V.

V. DISSIPATIVE EQUATION OF MOTION

When two identical GPs of massm collide, kinetic energy
is dissipated through excitation of the internal modes of
bration. In our simple model we neglect plastic deformati
effects. Since the collision time is much longer than the
brational time (tc@tv), we can assume that the interactio
between two GPs is very well described by the elastic H
zian quasi-static force@17#. The form for the interparticle
interaction can also be obtained from a Fokker-Planck eq
tion for the probability distributionW(Xt ,t) of a granular
system@14#

Ẇ~Xt ,t !5F S 2(
i51

N pi
m
•¹r i

1(
i51

N

¹r i
~U1v!•¹pi D

1
1

2(j
N

(
kÞ j

N

g jk r̂ jk r̂ jk :~¹pj
2¹pk

!

3S ~¹pj
2¹pk

!1b
pj2pk
m D GW~ t !, ~19!

wherepi ,r i ,i51, . . . ,N are the momenta and positions, r
spectively, of the centers of mass of the grain
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55 1943ENERGY DISSIPATION FOR QUASIELASTIC . . .
Xt5$pN,rN%, b5 1/kBT, whereT is the internal temperatur
of the GPs,g jk5g(r jk) is the dissipative coefficient calcu
lated in Sec. IV andr̂ jk is the unit vector in the direction
between particlesj and k, andU1v is the effective inter-
action potential between the grains.

In the case of two particles, we definer1,2(t)5^r1,2& t and
v1,2(t)5^ ṙ1,2& t , where ^B& t5*dXtW(t)B. Assuming that
W(Xt ,t) is sharply peaked, we can approxima
v1,2(t)' ṙ1,2(t). We also define relative and center of ma
coordinates

r125r22r1 , r cm125
1
2 ~r21r1!.

The deformation parameterh is defined as

h5H s2r 12 if s>r 12

0 otherwise,

wheres is the diameter of a GP.
From the basic result

d

dt
^B& t5E dXTẆB,

and Eq.~19!, after assuming thatU1v'V12
el we obtain

^ṗ2& t2^ṗ1& t5E dXt~p22p1!~¹r1
V12
el
•¹p1

1¹r2
V12
el¹p2

!W~ t !1E dXtg12r̂12

3~p22p1! r̂12:~¹p1
2¹p2

!S ~¹p1
2¹p2

!

1b
p12p2
m DW~ t !

52E dXtW~ t !~¹r2
V12
el2¹r1

V12
el !

2bE dXtg12r̂12r̂12.
p12p2
m

W~ t !

5^F12
el& t2

b

m
^g12r̂12r̂12•~p12p2!& t ,

whereF12
el52V12

el(h)8 r̂12.
The elastic potential between the grains is a function

the tensorE(am)(bg) defined in Eq.~9!. The microscopic
summation form ofV12

el reduces to the usual macroscop
elastic energy derived from phenomenological theories
terms of the particles Young modulusE, Poisson ratioS,
and radiuss/2, V12

el(h) in Eq. ~13! is given by@10,l8#

V12
el~h!5 1

2kh
5/2, ~20!

where for three-dimensional isotropic spheres@17#

k5S 8

15& D E

12S2R
1/2.
s

f

n

The equation for the time variation ofh for a frontal
collision becomes

m

2

d2h

dt2
52

5

4
kh

3
22

bg~h!

m

dh

dt
. ~21!

In the equation above, we observe that the energy di
pation is described by a frictional force mediated byg(r 12)

Ff52
bg~r 12!

m
~ k̂•p12!k̂.

We will next evaluateg(r 12)[g(h) as a function ofh so
that way we can solve Eq.~21! and thus determine the ve
locity dependent coefficient of restitution for a quasielas
collision.

VI. THE FRICTIONAL COEFFICIENT g

From Eq.~18!, the expression forg(h) when the particles
are identical, is given by

g~h!5(
j
F ~am!~bg!@~¹12ubg

~1!!~¹12uam
~1! !1~¹12ubg

~2!!

3~¹12uam
~2! !#, ~22!

whereF (am)(bg)5tvkTE(am)nE(bg)uDnu
21i j

The behavior ofg(h) can be obtained by a scaling arg
ment following Landau and Lifshitz@17#. The equation for
the radius of the contact region,b, as a function of the cur-
vature of the particle,A52/s, wheres is the diameter of the
particles, is given by@17#

A5
FD

p E
0

` dj

~b21j!2~j!1/2
.

The deformationh is given by@17#

h5
FD

p E
0

` dj

~b21j!~j!1/2
,

whereF is the force between the spheres and@17#

D5
3

2 S 12S2

E D .
In order to keep the above equations invariant, we sc
lengths by a factorAa (b→Aab, j→aj andx→Aax), and
the force by a factora3/2 (F→a3/2F). We then obtain for
h→ah, showing that the force varies ash3/2 @ll #. Thez com-
ponent~collision axis! for the deformation vectoruz(x) is
given by @19#

uz~x!5
3F

2pa2Ex821y82<b2

dx8dy8

A~x2x8!21~y2y8!21z2

3S 12
x821y82

b2 D 1/2. ~23!

Using the variablex95bx8, we show thatuz(x) scales as
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uz~x!→uz~Aax!5auz~x!. ~24!

From above, we obtain the scaling behavior of the str
tensor

uab~x!→uab~Aax!5Aauab~x!. ~25!

The tensorsE(am)(bg) andF (am)(bg) are invariant under the
a scale transformation. The derivatives of the strain ten
scale as

]uab~x!

]h
→

]uab~Aax!

a]h
5

1

Aa

]uab~x!

]h
. ~26!

We deduce from this that the total elastic energy scale
a5/2 and the dissipative functiong(h) asa1/2, implying that
Vel}h

5/2 andg(h)}h1/2.
Due to the scaling properties of the strain tensoruab and

its derivative@]uab(x)/]h#, we can write

]uab~x!

]h
5
B

h
uab~x!,

whereB is a proportionality constant.
We deduce from the above and Eq.~22! that

g~h!5(
j
F~am!~bg!~ubg

1 uam
1 1ubg

2 uam
2 !h22, ~27!

where F(am)(bg)5B2F (am)(bg) . The tensorF(am)(bg) pos-
sesses the same symmetry properties asE(am)(bg) . Conse-
quently,g(h) will be a function of different phenomenolog
cal parameters but of the same form asVel[Vel(E,S).

Given that the elastic force between the GP is obtained
taking the derivative ofVel Eq. ~20! with respect toh, we
obtain forg(h) in Eq. ~22!

g~h!5 5
2 k8h

5/2h225 5
2 k8h

1/2, ~28!

wherek8 is a function of the tensorF(am)(bg) , and has the
same form ask with E→h1 andS→h2, whereh1 andh2
are the corresponding viscoelastic coefficients.

The equation of motion for the GP on a frontal collisio
then becomes

m

2

d2h

dt2
5
5

4
kh3/22

5

2
k8h1/2

dh

dt
. ~29!

Equation~29! reproduces results obtained by heuristic me
ods @10,11#.

The above equation will describe the behavior of
smooth spherical GP at speeds much smaller than the s
of sound inside the grain.

The relative importance of dissipation can be obtained
assuming typical values for the physical parameters in qu
tion. The typical interatomic potential is denoted byf0, the
typical value of uab is u, the typical elastic energy is
f'(f0uu, the typical lattice spacing isa. We may assume
f'kTg ~hard-sphere approximation!, whereTg is the granu-
lar temperature, andmvg

2'kTg .
The coupling tensors are given by
n

r

as

y

-

ed

y
s-

Dmn'
f0

a2
, E~mn!~ab!'f0 ,

thus showing whyf'(f0uu. In addition, we obtain for the
symmetric tensorE(mn)a

E~mn!a'
f0

a
,

and the typical correlation function

E dt^xx~ t !&'
kTa2tv

f0
.

Thus we obtain forg

g'(
f0
2

a2
u2

L2
kTa2tv

f0
'
kTtv
L2 ( f0uu'

kTtvf

L2
,

whereL corresponds to the typical deformation length w
L!s.

We are now prepared to evaluate the inelastic term in
fundamental Fokker-Planck equation for the distributio
W[W(rN,pN), which is a function of the granular degrees
freedom$rN,pN%. Let t be an arbitrary time scale, and let th
terms with asterisks be dimensionless@O(1)#. Given that
O* is a second order differential operator, the dissipat
contribution will be@14#

1

t

]W

]t*
'

g

m2vg
2

kTg
kT

O*W.

Replacing the value obtained forg, we have

1

t

]W

]t*
'
kTtvf

L2
1

m2vg
2

kTg
kT

O*W'
ftv
mL2

O*W.

Letting t i'L/vg , wheret i is the time a granular particle
takes to move a distance corresponding to its deforma
length (;L), we obtain

1

t

]W

]t*
'

tv
t i
2O*W.

If we set the time scalet5t i , we obtain

]W

]t*
'S tv

t i
DO*W. ~30!

So we observe that the order of magnitude of the dissipa
term on the time scale oft i with respect to the streamin
term is given roughly by the ratio between the granular
locity and the velocity of sound in the material that constitu
the grains. The relative order of magnitude of the dissipat
term in the Fokker-Planck equation forW relative to the
streaming term is given approximatively by

tvtc
t i
2 '

s

L

vg
vs
.
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For typical vsound;(103–104vg) and L/s;1022, one
sees that the ratio is small as expected, but not extrem
small.

In a recent paper@11#, the authors propose a model whic
implies that in order to break the asperities of the surface
two grains ~plastic deformation! in contact, the tangentia
stress~which is a function of shear deformation! has to ex-
ceed a material dependent threshold. In other words, the
lision has to be energetic enough to conquer the elastic
tential barrier. We believe then, that the present viscoela
frictional model will describe satisfactorily slow collision
for rough and also smooth granular systems~in which case
the energy dissipated by plastic deformations of asper
will be far smaller than that for typical systems found
nature!.

VII. CONCLUSIONS

In the present study, we obtain the coefficient of instan
ly

f

ol-
o-
ic

s

-

neous energy dissipation for collisions between two gra
by an appropriate separation of the potential energy into
ternal, granular, and coupling parts and with the help o
first principles theory for granular distribution functions.

The form for the dissipative coefficientg(r ) that we ob-
tain is identical to the ones obtained elsewhere@10,11# as-
suming phenomenological viscoelastic dissipative coe
cients. The agreement suggests that the phenomenolo
model is a plausible one to describe the interaction betw
GPs that do not involve plastic deformation of the grains. W
are extending the present model in order to include the c
of rough granular systems.
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