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Energy dissipation for quasielastic granular particle collisions
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From a first principles theory for the behavior of smooth granular systems, we derive the form for the
instantaneous dissipative force acting between two grains. The present model, which is based on the classical
harmonic crystal, reproduces the dependence of the kinetic energy dissipation on the grain deformation ob-
tained by models that assume a viscoelastic behgvithout permanent plastic deformationduring the
collision. [S1063-651X97)04902-7

PACS numbdrs): 46.10+2z, 05.60+w, 46.30.Pa, 51.16.y

[. INTRODUCTION the model for the potential energy of deformed harmonic
grains from the classical harmonic crystal model. In Sec. lll,
The term granular system designates a wide range rangee study the case of two interacting grains. In Sec. IV, a
of physical systems that are characterized by certain commdiansport coefficient describing the instantaneous kinetic en-
features[1]: they exist in macroscopic portiongraing,  €rgy dissipation is obtained. In Sec. V, we obtain the equa-
which, in the dry state, interact mainly repulsively throughtion of motion for colliding grains. In Sec. VI, the magnitude
rigid elastic interactions; there is contact friction between the?f the dissipative term is evaluated. In Sec. VI, we present a
grains; and energy is dissipated during collisions due to th&rief summary of our results.
excitation of the internal modes. Sand, powders, particles in
planetary ring$2], salt and sugar, and grains in a i§j are Il. DEFORMATIONS AND POTENTIAL ENERGY
just a few of the many examples of granular systems. These
systems are extremely important for a number of industrial In this section we derive the potential energy of a de-
applications[4] (transport properties of powder or grains, formed spherical granular particle. We assume that its atoms
mixtures of grains and fluids, ejc.Thus it is important to  interact through microscopic two-body potentials. The atoms
understand their flow properti¢4,5,6. The loss of kinetic in the granular particle$GP) are arranged in a crystalline
energy via heating the grains makes the granular gas fundéattice form. LetR; denote the equilibrium, nondeformed po-
mentally different from a molecular systefii] and an im-  sition of atomi (R;=aa+bb+ cc, wherea,b,c are the Bra-
portant medium to study nonequilibrium phenomena. Granuvais lattice basis vectors, aralb,c are integers[12]. Let
lar systems present a rich variety of behavior ranging fronp, denote the displacement from equilibrium for atopand
solidlike to liquidlike, depending on the external stresses aplet u;=u(R;) denote the displacement of ataiis equilib-
plied to the systenp8]. rium position due to external constraints. The atom’s actual
The inelastic character of granular collisions can be sumpositiond,; is therefore given by
marized in terms of a coefficient of restitution which is a
proportionality relation between the final and initial relative d=R+u+p;.
velocities in a collision. Even though the coefficient is o

known to depend on the initial relative veloci], for sim- The distance between two atoms in the deformed medium is

plicity and compu'gatlonal economy, severa[ guthors have 2Ihen a function of the initial undeformed distance and of the
sumed it to be independent of the collision parameters

[1,5,6]. In order to improve the understanding of instantal-e'aStIC and thermal displacements,
neous energy dissipation, some authors have tried to model
relative velocity-dependent dissipation functions. Self- dij=(Rj=Ri) + (uj—u) + (p;— pi)- (1)
consistent dimensional arguments were yggdbut a more
promising line assumes that the collision is slow enough sd@he differenceu;—u; depends on the deformation experi-
that a weak viscoelastic frictional force is superimposed ont@nced by the crystal. IR;—R; is small compared to the
the elastic repulsive forcgl0,11]. characteristic length associated with the deformations, we
In the present study, we propose to investigate a simplebtain
microscopic model for harmonic grains. Under the assump-
tion that the collisions are slow enough so that no plastic uj—u=(R;—Ry)- VRU(R)|r=r
deformations occur, the present model reproduces the results :
obtained using a viscoelastic interaction between the grains 9
[10,11]. =(Rj=Ri)g-—u(x) : ()
The paper is organized as follows. In Sec. I, we develop A x=R
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where Greek subscripts denote coordinate indices and reccounts for the classical elastic energy of the matgti2ll
peated indices imply summatidfor 8=1,2,3). The distance Using the properties dD'/'w we can rewriteV,, in the form

between atoms andj is then given by

J
dij :(Rj_Ri)+(Rj_Ri)ﬁaTiBu(Ri)+(pj_pi)- (©))

1 au, au,
Vel:i; Ea;LBVO-)Ta(Rj)

aTB(Rj)'

where the derivatives af are taken at the poirR; and

We will assume that effects associated with displacement

of dislocations and other crystal defects are small. Thus, we
can expand the total crystal potential energy around the new Eappr="— >
positions of the atoms up to second order in the variations of

the positions. By expanding the potential

‘I’I%E > b

i i#]

around the equilibrium distance oR(—R;) [13], we obtain

¢IJ:¢(|dij|)1
¢ij~d(IR—RiD+(Bij- V) (IR —Ri|)
+3(B; V)?(IR;—R]),

1
P=52 $(R-RD+ 2 (B -V)? (IR —Ri]),
(@

up to quadratic order, where B;=pB—pBi=(R;
—R;)-Vu+(p;—p;), and the indices andj run over all
atoms in the GP. )

We define the matriD)},

Ij _5 E &Zd)lk . (92¢ij

X, 0K, X, 0K,

©)

With the properties
all atoms
p},=bDi,, DI,=D},, Z D}},=o0.

v

Thus® can be written in the form

1 1 .
¢=32 #(R~RD+ 52 B.DLB,. O

The potential® can be separated into ground state en-

all atoms

zi RiaD,uV(Ri)Ri,B'

The above expression can be further transformed by noticing
that a pure rotation does not change the solid energy. This
implies thatV can depend ondu,/dxs) only through the
strain tensor, which for small deformations has the form

1(ou,  dug) g
Uap™3 IXg X, ®
The elastic term then becomgk2]
1
Ver=52 Etamiontau(R))Uss(Ry), €]

where the symbolsdu) and (Bv) denote the symmetric
part of E¢,,s,) With respect to &u) and (Bv), respec-
tively.

The term

= ij "~
Vo=2, R.QD,”(?X (R)pj,.

is responsible for the coupling between the internal degrees
of freedom,p;, and the distance between the two GPs cen-
ters of mass, through the derivativéu(, /dx,), which can
be taken aR; to a very good approximation.

Due to a similar argument to E@9), we can write the
coupling term as

V¢=§j: E(aplawPiv (10

whereE,,,, is the symmetric tensdion au) given by

(11)

1
Eenr=" 72 [RieDus(R)+ RiuDan(R))].

ergy, harmonic potential, elastic potential, and coupling parts

as follows:
z?u ou,
b= (I)0+ E Pi D wPj V+ E RaDIJV
= uvl’) ! M JB (9X (?XB
+E Ri,D! “p,y, (7)

KY0X

Where¢0=E]E|<J¢(|RJ_ R||)
The elastic potential terrfdue to the deformatignwhich
is given by

My
Y oxg

el_ Z RlaDIJ JB(;,X

(R)),

Ill. INTERACTION BETWEEN
TWO GRANULAR PARTICLES

When two GPs interact, the results of Sec. Il must be
generalized to include cross-terms between the degrees of
freedom of the two grains. We have to take into account the
terms that correspond to direct interaction between GPs 1
and 2. Before doing the expansion f@; (wherei belongs
to particle 1 and belongs to particle 2 we can eliminate
those¢;'s which are smallthose for which/r;;|>ro= in-
teraction range of the order of the lattice paramet8mce
this is a short range interaction, only those atoms close to the
interface between particles 1 and 2 will contribute. Their
number being proportional to the area of the interface, we
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will neglect them in comparison with the bulk contribution to (1)
the coupling energy. The coupling potential can then be writ- Y(r1)=2 Eln EG o(Viud) (Viulh)
ten as(where the superscripts denote the grain h
* 1 1
(1) (2) Xfo dT(PSV)PJ((;)(T»f

(2)
2 2) 2 2
+ IE] Ega),u) VEEBJ/) 0( VlZUEE’;) ( V12u (a/b

— 1 1 1 2 2) (2
Vo= S e+ S B2, 0000, (2

where the superscriptd) and (2) denote particles 1 and 2,

and the strain tensor depends on the Bravais summation in- % °°d ( (2) (2)( ) (16)
dex. We are going to use the convention that whenever there 0 \Piv Pio ATt
is a sum over Bravais vectors in the following, the strain
tensor depends on the summation index. whereV,=V, .
The total elastic contribution will be The harmonic form for the potential gives in the first ap-
proximation[15,16|
IS TR S @, (Pivpjo(7)) =D, " ke TF(7), (17)
V=52 ElaenUantis + 520 Eluniaitis, (13
where the correlation functiof(7) can be assumed to decay
quickly for a large range of interatomic potentials to insure
and the total harmonic contribution is given by the convergence of the time integrals. We will assume the

form [16]

(1)

. F(r)=e "7,
V=52 (pf) = Pl D (o) = pf2)

b wherer, sets the vibrational time scale. The time integrals in
2) Eq. (16) becomer,D, kT.

1 .
+ EZ (p{2) = pD2N (p(2—pi2). (19 Since the particles are identical, we can rewsite;,) as
]

jv

—1ij 1 1
Y(rip)= TUZ E(au)vE(py)aDyg " X ((V12U([;;)(V12UEW),)
IV. DISSIPATION OF ENERGY "

(2) (2)
Schofield and Oppenheifd4] proposed a mechanism for + (Vagligy) (Valg)- (18)

the dissipation of energy that occurs when two @GRand 2
collide. It is mediated by a transport coefficient defined a
follows:

Equation(18) describes the energy dissipation occurring dur-
%ng the collision of two GPs, as will be seen in Sec. V.

V. DISSIPATIVE EQUATION OF MOTION

Y(r1p)= f dr(VV e tnVV )¢, (15 When two identical GPs of mass collide, kinetic energy
0 is dissipated through excitation of the internal modes of vi-
bration. In our simple model we neglect plastic deformation
where(- - -} means a statistical average keeping the cente?ffe‘.:ts' S|_nce the collision time is much longer t_han the_ V-
of masses fixed, , is the Liouvillian operator for the inter- brational time (T°>.Tv)' We can assume that the |nter_act|on
nal granular degrees of freedom onlje., center of mass between two GPs is very well described by the elastic Hert-

positions and total momentum are kept fixedand zian quasi-static forc¢l7]. The form for the interparticle
- ) o ) interaction can also be obtained from a Fokker-Planck equa-
A=A—(A);. The typical variation oflp;| is smaller than

/ . ) ) X tion for the probability distributionV(X;,t) of a granular
a, the typical lattice spacing. Given that the typical Macro-gystem[14]
scopic deformation if, ando is the GP’s diameter, we have
the inequalite|a<h<o. )
The coefficienty(r 15) will be given to lowest order in the W(X;,t) =[
strain tensofwhich is assumed to be smalbly [14]

| B

-2

=1

N
Vo+ Vr_(u+w).vp_)
(- i i

3

N N
+ 2 kE ’yiijkl’:J‘k:(ij_vpk)

N| =

7(I’12) = fo d7'<VAV¢87 LharmTV’\V¢>f .

X[ (Vo= Vo) 8 W), (19

m

p;— pk)

The linearity ofV,, in p; leads toVV,=VV,, due to the
symmetry of a harmonic oscillator. Cross averages likewherep;,r;,i=1,... N are the momenta and positions, re-
(VP will also vanish. Thus, we have foy(r ;) spectively, of the centers of mass of the grains,
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Xt={pN,rN}, B= 1/kgT, whereT is the internal temperature The equation for the time variation df for a frontal

of the GPs,y;x=y(r ;) is the dissipative coefficient calcu- collision becomes

lated in Sec. IV and, is the unit vector in the direction

between particles anéikk, andU + w is the effective inter- m ﬂ: _ E g_ By(h) @

action potential between the grains. 2 dt* 4 m dt
In the case of two particles, we defing,(t)=(r; 5); and

Vi {t)=(r12;, where (B)=/dXW(t)B. Assuming that

W(X;,t) is sharply peaked, we can approximate

vlﬁz(t)wflyz(t). We also define relative and center of mass By(rim)
coordinates Fi=———(k-

(21)

In the equation above, we observe that the energy dissi-
pation is described by a frictional force mediated Yy 1)

plZ)R-

_ _1 . .
F12=r2=r1, Temz=2(r2Hr1). We will next evaluatey(r ;,)= y(h) as a function oh so
that way we can solve Eq21) and thus determine the ve-

The deformation parametéris defined as locity dependent coefficient of restitution for a quasielastic

) [(T—flz it o=ry, collision.
0 otherwise, VI. THE FRICTIONAL COEFFICIENT
whereo is the diameter of a GP. From Eq.(18), the expression foy(h) when the particles
From the basic result are identical, is given by
d — ' (1) (1) (2)
&<B>t_ dX;WB, Y(h):; Flaw gyl (Viugy) (Viuy,) + (Viug,)
and Eq.(19), after assuming thal + w~V$, we obtain X(Viu2)]1, (22)
_ —1ij
: L ol whereF 45y = 7oK TE(au)E(8y)sD1
<p2>t_<pl>t_f dXi(P2=P1) (Vi Viz Vp, The behavior ofy(h) can be obtained by a scaling argu-
ment following Landau and Lifshitg17]. The equation for
1V VRV Wit +f dXoveot the radius of the _contact regioh, as a functl_on of the cur-
r2V/12Vp,) WIU) V1212 vature of the particleA= 2/o, whereo is the diameter of the

particles, is given by17]

~ FDJOC d¢

T ow Jo (P24 €)%V

X(pZ_pl)F12:(Vpl_vp2)( (Vo,~ V)

+,8p1;p2)W(t)
The deformatiorh is given by[17]

=~ [ axwo v, vei-v, vih o

T Jo (D21 &) (67

~ o~ PP
—,gf dXeyaal 1o 12— = WD) whereF is the force between the spheres &hd|
B, - - 3(1-32
=(Fipi~ a( Y1 1212 (P1=P2))t D= 3|
whereFSh= —V&y(h) T 1,. In order to keep the above equations invariant, we scale

The elastic potential between the grains is a function ofengths by a factox/a (52—> Vab, 5/2—> aé andx— ax) , and
the tensorE,,s, defined in Eq.(9). The microscopic the force by a factow (F—a® F). W(ZB then obtain for
summation form ofv) reduces to the usual macroscopic h— ah, showing that the force varies 88?[ll]. Thez com-
elastic energy derived from phenomenological theories. IPonent(collision axig for the deformation vectou,(x) is
terms of the particles Young modul& Poisson ratics,, ~ 9iven by[19]
and radiuss/2, Vy(h) in Eq. (13) is given by[10,I8]

3F dx'dy’
VEyh)=3kn®"2, (20 HA0= ﬁfxruyrzsbz¢(x—xf)2+(y_yf>2+zz
where for three-dimensional isotropic sphef#g] X'24y'2\ 12
X 1——bz— (23
e[ ) e
15v2) 1-3%"" Using the variable<”=bx’, we show thau,(x) scales as
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U (X) = U(Vax) = au (). (24 o

Duv~22+ Bluniap™ o,

From above, we obtain the scaling behavior of the strain

tensor thus showing whyp~= ¢ouu. In addition, we obtain for the
symmetric tensoE,,,y,
U g (X) — U (N aX) = Va s(X). 25 ¥ ()
The tensorsE (s, anNdF (4.5, are invariant under the E(un)a™ @,
«a scale transformation. The derivatives of the strain tensor K a
scale as

and the typical correlation function
Map(0)  Map(Nax) 1 dap(X)
dh adh Ja dh

kTar

26,
(28 J’dr(xx(t))w ™

v

We deduce from this that the total elastic energy scales thus we obtain fory

a2 and the dissipative functiop(h) as ', implying that
Ve <h¥2 and y(h)<ch2, 2 2 2

Due to the scaling properties of the strain tensgg and %2 @ u @~ @2 douu~ KT, ¢
. L - Y 2|2 L2 0 L2
its derivative[ du,g(x)/dh], we can write a o

du,p(X) B whereL corresponds to the typical deformation length with
oh :Huaﬁ(x)! L<o.
We are now prepared to evaluate the inelastic term in the

whereB is a proportionality constant. fundamental Fokker-Planck equation for the distribution,

We deduce from the above and Eg2) that w=Ww(rN,p"), which is a function of the granular degrees of

freedom{rN,pN}. Let 7 be an arbitrary time scale, and let the
11 2 2 terms with asterisks be dimensionlgg9(1)]. Given that
yh=2 Flamn(UpMautUg,Ug, )N (20 o* s a second order differential operator, the dissipative
J contribution will be[14]
where ]—"(am(ﬁyﬁBzF(w)(ﬁy). The tensorF ,.)sy) POS-
sesses the same symmetry propertie€as,s,) . Conse- 1 ﬂv% L@O*W
quently, y(h) will be a function of different phenomenologi- T ot*  mPul kT '
cal parameters but of the same form\as=V,(E,).
Given that the elastic force between the GP is obtained bjReplacing the value obtained fot, we have
taking the derivative o, Eq. (20) with respect toh, we
obtain fory(h) in Eq. (22) 1dW kTr¢ 1 KTy &7,

—_——— Y, —— ———— * =~
o*w i

*
T ot* L2 mzvg kT O*W.

y(h)= % k/h5/2h—2: g k’hllz, (28)
Letting ri~L/vy, wherer; is the time a granular particle

wherek’ is a function of the tensaf(,,(,), and has the takes to move a distance corresponding to its deformation
same form ak with E— », andX— 7,, wheren, andn,  length (~L), we obtain

are the corresponding viscoelastic coefficients.

The equation of motion for the GP on a frontal collision 1oW 7,
then becomes Toott ?O W.
I
mdh 5 5 dh . .
= _kh3?2— k'Rl If we set the time scale=7;, we obtain
> 4 4kh 2kh TR (29 Ti
_ ) o W [T,
Equation(29) reproduces results obtained by heuristic meth- —~ —) O*W. (30
ods[10,11]. at i

The above equation will describe the behavior of a

smooth spherical GP at speeds much smaller than the spe§8’ we observe that the order of magnitude of the dissipative
of sound inside the grain. term on the time scale of; with respect to the streaming

The relative importance of dissipation can be obtained by'™ IS given roughly by the ratio between the granular ve-
assuming typical values for the physical parameters in que ocity and the velocity of sound in the material that constitute

tion. The typical interatomic potential is denoted By, the the gr.alni. T:le krlflat';:a ordker of mlagnlftude Olf the dISSIEatlve
typical value of u,g is u, the typical elastic energy is M IN the Fokker-Planck equation o relative to the

¢~Z= pouu, the typical lattice spacing ia. We may assume streaming term is given approximatively by
¢~kT, (hard-sphere approximatiprwhereT g is the granu-
lar temperature, and1vé~ kTg. Tv :c o E'

The coupling tensors are given by i L vs
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For typical vsoundv(log—lo“vg) and L/c~10"2, one neous energy dissipation for collisions between two grains
sees that the ratio is small as expected, but not extremelyy an appropriate separation of the potential energy into in-
small. ternal, granular, and coupling parts and with the help of a

In a recent papdrll], the authors propose a model which first principles theory for granular distribution functions.
implies that in order to break the asperities of the surface of The form for the dissipative coefficient(r) that we ob-
two grains (plastic deformationin contact, the tangential tain is identical to the ones obtained elsewhgi®,11 as-
stress(which is a function of shear deformatiphas to ex- suming phenomenological viscoelastic dissipative coeffi-
ceed a material dependent threshold. In other words, the cotients. The agreement suggests that the phenomenological
lision has to be energetic enough to conquer the elastic panodel is a plausible one to describe the interaction between
tential barrier. We believe then, that the present viscoelastiGPs that do not involve plastic deformation of the grains. We
frictional model will describe satisfactorily slow collisions are extending the present model in order to include the case
for rough and also smooth granular systefimswhich case of rough granular systems.
the energy dissipated by plastic deformations of asperities
will be far smaller than that for typical systems found in
nature. ACKNOWLEDGMENTS
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